Some Rudimentary Structures
نویسندگان
چکیده
منابع مشابه
Rudimentary Galois Theory
This paper introduces basic Galois Theory, primarily over fields with characteristic 0, beginning with polynomials and fields and ultimately relating the two with the Fundamental Theorem of Galois Theory. This paper then applies Galois Theory to prove Galois’s Theorem, describing the relationship between the Galois groups of polynomials and their solvability by radicals.
متن کاملON SOME STRUCTURES OF FUZZY NUMBERS
The operations in the set of fuzzy numbers are usually obtained bythe Zadeh extension principle. But these definitions can have some disadvantagesfor the applications both by an algebraic point of view and by practicalaspects. In fact the Zadeh multiplication is not distributive with respect tothe addition, the shape of fuzzy numbers is not preserved by multiplication,the indeterminateness of t...
متن کاملOn Symmetry of Some Nano Structures
It is necessary to generate the automorphism group of a chemical graph in computer-aided structure elucidation. An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for i≠j, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce...
متن کاملNarumi-Katayama Polynomial of Some Nano Structures
The Narumi-Katayama index is the first topological index defined by the product of some graph theoretical quantities. Let G be a simple graph. Narumi-Katayama index of G is defined as the product of the degrees of the vertices of G. In this paper, we define the Narumi-Katayama polynomial of G. Next, we investigate some properties of this polynomial for graphs and then, we obtain ...
متن کاملRudimentary Reductions Revisited
We show that log-bounded rudimentary reductions (de ned and studied by Jones in 1975) characterize Dlogtime-uniform AC .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific American
سال: 1906
ISSN: 0036-8733
DOI: 10.1038/scientificamerican09081906-25648supp